《人工智能的基础》

  培训讲师:段方

讲师背景:
段方专业背景:曾在中国银行工作现任某集团总部大数据专家、数据仓库项目经理多家培训机构及大学总裁班特邀讲师十几年专注于大数据的研究与推广积累了15年的大数据领域的实际工作经验。带领相关的团队,从系统创建到系统运营,开发了很多大数据领域的各种应 详细>>

段方
    课程咨询电话:

《人工智能的基础》详细内容

《人工智能的基础》

人工智能的基础》
-段方 北京大学博士后
1 概述
1.1 从阿尔法狗与李世石的围棋说起
1.1.1 过程概述
1.1.2 阿尔法狗改变了什么?
1.2 AI 的概念和特点
1.2.1 AI 的各种定义
1.2.2 AI 的特点
1.3 AI 的发展历史
1.3.1 史前期
1.3.2 形成期
1.3.3 萧条期
1.3.4 兴旺期
1.4 人工智能的研究内容
1.4.1 知识表示
1.4.2 机器感知
1.4.3 机器学习
1.4.4 机器思维
1.4.5 机器行为
1.5 硬件的进步
1.5.1 GPU 的发展
1.5.2 FPGA 的应用
1.5.3 物联网的进步
1.6 人工智能行业发展现状
1.6.1 芯片层面
1.6.2 算法层面
1.6.3 应用层面
1.6.4 开源的深远影响
1.7 人工智能存在的问题及前景
1.7.1 人工智能的这一波进展有何局限?
1.7.2 人工智能会替代人吗?
1.8 【案例】
1.8.1 《谷歌的无人驾驶汽车案例》
1.8.2 《人工智能在智能交通中的应用》
智能流量控制
停车位智能引导
车牌的识别——套牌监控
罪犯人脸识别
车联网的事故分析 线路规划设置
2 人工智能技术内容与分类
2.1 技术内容
2.1.1 推理技术
2.1.2 搜索技术
2.1.3 知识表示与知识库技术
2.1.4 归纳技术
2.1.5 联想技术
2.2 人工智能架构
2.2.1 TensorFlow
2.2.2 caffe
2.2.3 MXNET 等
2.3 人工智能编程语言
2.3.1 Python
2.3.2 Java
2.3.3 Lisp
2.3.4 Prolog
2.4 分类
2.4.1 脑功能领域划分
机器感知 机器联想 机器推理 机器学习 机器理解
机器行为
2.4.2 研究途径与实现技术的划分
符号智能 计算智能
2.4.3 应用领域的划分
自动定理证明 自动程序设计
智能管理/决策/通信 专家系统
知识库系统
智能数据库系统 智能机器人系统
2.4.4 计算机系统的领域划分
智能操作系统
智能多媒体系统
智能计算机系统 智能网络系统
2.4.5 实现工具与环境的划分
智能软件工具 智能硬件平台
2.4.6 基于体系结构领域
集中式人工智能 分布式人工智能
2.5 人工智能系统的构建
2.5.1 明确业务目标
目标的表述
每个部分使用什么算法?
2.5.2 收集数据
有哪些数据?
数据质量的评估
数据的建模
2.5.3 确定算法
算法选择的依据 算法的评估标准 算法的对比
算法的确立
2.5.4 评估结果
评估什么内容? 评估的指标
是否调优算法
2.5.5 应用部署
如何部署到实际系统中 结构的可视化解释
业务流程如何变更?
2.6 【案例】基于人工智能的人脸识别技术案例
3 人工智能的应用内容
3.1 模式识别应用
3.1.1 人脸识别
3.1.2 文字识别
3.1.3 物体识别
3.2 博奕类应用
3.2.1 IBM 的 “深蓝”
3.2.2 “紫光之星”
3.3 专家系统
3.3.1 医疗领域
3.3.2 探矿领域
3.4 机器人
3.4.1 KAKU 机器人
3.4.2 机器人足球
3.4.3 机器人舞蹈
3.5 机器视觉
3.5.1 图像识别
3.5.2 罪犯人脸特征分析
3.6 自然语言理解
3.6.1 谷歌翻译
3.6.2 语音识别
3.7 其它应用
3.7.1 自动程序设计
3.7.2 智能信息检索
3.7.3 声纹识别
3.7.4 智能仿真
3.8 【案例】AlphaGo 下围棋的原理介绍
3.9 【讨论】AI 会如何从各个领域改变汽车行业?
4 人工智能大数据基础
4.1 目前 AI 的突破点在哪里?
4.1.1 深度学习方法
4.1.2 大数据的丰富维度
4.1.3 GPU 运算速度提升
4.1.4 “谷歌的态度是, 数据弥补一切”
4.2 大数据的概念和特点
4.2.1 大数据的概念
4.2.2 大数据的特点
4.2.3 大数据的应用概述
4.3 大数据对于 AI 的价值
4.3.1 用大数据“ 喂 ”人工智能
4.3.2 大数据提供了更丰富的分析角度
4.3.3 大数据提供了更细致的分析深度
4.3.4 大数据提供了更新鲜的分析跨度
4.3.5 大数据支撑了更多的分析方法
4.4 大数据的基础
4.4.1 从数据仓库到大数据
4.4.2 HADOOP 概述
4.4.3 元数据及数据质量
4.4.4 如何丰富了分析的维度、深度、跨度
4.5 数据挖掘与人工智能
4.5.1 数据挖掘概述
4.5.2 数据挖掘如何助力人工智能
4.5.3 数据挖掘/深度学习对企业影响哪个大?
4.5.4 数据挖掘的局限性
4.6 云计算人工智能
4.6.1 云计算的概念
4.6.2 云计算提供了丰富的计算能力
4.6.3 传统人工智能的瓶颈——计算能力
4.6.4 云计算如何助力人工智能?——“如虎添翼 ”
4.7 【案例】大数据下的客户深度分析案例
4.8 【案例】大数据下的企业精细化管理案例
5 人工智能的深度学习
5.1 概述
5.1.1 为什么是深度学习?
引出
与浅层学习的区别 原因
5.1.2 什么是“无监督 ”学习?
5.1.3 与神经网络的关系?
5.2 神经网络学习
5.2.1 概念 脑神经元分析 5.2.2 原理 BP 网络
5.3 深度学习介绍
5.3.1 多层神经网络
5.3.2 深度学习的弱点
缺乏时间概念 视频与图片
5.4 深度学习原理
5.4.1 从单层神经网络到多层神经网络
5.4.2 深度学习的训练过程
5.4.3 深度学习的具体模型及方法
5.4.4 深度学习的性能比较
5.4.5 深度学习的应用
5.5 深度学习的意义
5.5.1 改变了传统人工智能的哪些思维定式?
5.5.2 深度学习的无监督学习
5.6 【案例】谷歌如何识别一只“猫” ?
6 人工智能的算法解析
6.1 人工智能的算法范畴
6.1.1 搜索算法
6.1.2 博弈算法
6.1.3 模糊算法
6.1.4 遗传算法
6.2 机器学习算法
6.2.1 C4.5 算法
6.2.2 K-means 算法
6.2.3 朴素贝叶斯算法
6.2.4 K 最近邻分类算法
6.2.5 ME 最大期望算法
6.2.6 PAGERANK 算法
6.2.7 AdaBoost 算法
6.2.8 APRIORI 算法
6.2.9 CART 分类与回归树
6.3 深度学习的算法
6.3.1 (多层) 感知机
6.3.2 深度神经网络(DNN)
6.3.3 循环神经网络(RNN)
6.3.4 卷积神经网络(CNN)
6.3.5 长短期记忆网络(LSTM)
6.4 【案例】算法实际应用案例
6.4.1 客户语音识别案例
7 人工智能的未来畅想
7.1 人工智能的优势
7.1.1 存储优势
7.1.2 数据优势
7.1.3 计算优势
7.1.4 逻辑优势
7.1.5 TPU 的计算能力?
7.2 人工智能当前的劣势
7.2.1 靠大数据
7.2.2 人类的标注过程
7.2.3 缺乏自编程能力
7.2.4 算法的进步很慢
7.2.5 要切入每个应用领域
7.3 人工智能渗透到各个领域
7.3.1 艺术领域
音乐 绘画 诗歌
7.3.2 工程领域
无人驾驶机械 Subtopic
7.3.3 教育领域
7.3.4 医疗领域等
7.4 【案例】人工智能在汽车行业中的应用
7.4.1 自动驾驶汽车
7.4.2 路况识别
7.4.3 智能检修
7.4.4 智能规划路线
7.4.5 事故数据的上传与分析
7.4.6 驾驶习惯分析
7.4.7 智能防偷盗
8 人工智能的关键点
8.1 数据重要还是算法重要?
8.2 如何收集非结构化数据?
8.3 应用的最后一公里问题
8.4 人工智能应用步骤规划
8.5 如何借助他人的“肩膀” ?
9 总结

 

段方老师的其它课程

《“连接+算力+能力”——移动公司新战略》-段方某世界100强企业大数据/AI总设计师教授北京大学博士后===========================================================概述-------------------------------------------------------------1.1中国移

 讲师:段方详情


《大数据系列培训的课程目录》——段方段方——北京大学博士后摘要列出大数据系列课程目录,从不同角度详细介绍大数据的各种相关内容。从实际案例出发,分享实际建设、运营的经验和教训,分享个人的思考。【讲师简介】30余年计算机(IT)领域从业经历,直至博士后的学历背景;16年大数据系统(含数据仓库)设计、建设、应用、管理、运营实际经验,累计投资120亿元买来的教训;2

 讲师:段方详情


《基于大数据的机器学习和深度学习》——原理与实践目录1背景1.1从AlphaGo说起5\lquot;bookmark6quot;1.1.1AlphaGo的效果5\lquot;bookmark8quot;1.1.2AlphaGo的原理5\lquot;bookmark10quot;1.2机器学习基础5\lquot;bookmark12quot;1.2.1机器学习

 讲师:段方详情


《物联网技术与应用》段方——北京大学博士后目录1概述1.1物联网概念及特点1.1.1定义1.1.2与互联网的关系1.1.3物联网的特点1.2物联网发展历程1.2.1源起1.2.2中国移动的“万物互联”1.3物联网关键技术1.3.1从RFID开始1.3.2感应识别技术1.3.3定位系统1.3.4其它的感应技术1.4物联网的产业链1.4.1设备层面1.4.2网络

 讲师:段方详情


=============================================================《人工智能(含机器学习)及其在电信领域应用》-段方某世界100强企业大数据/AI总设计师教授、北京大学博士后=============================================================1930

 讲师:段方详情


=============================================================《中国广电5G运营策略》——段方中国移动资深专家教授北京大学博士后=============================================================15G发展概述1.15G概述1.25G技术特征1.

 讲师:段方详情


=============================================================《人工智能基础及应用培训》-段方某世界100强大数据/AI总设计师教授北京大学博士后=============================================================202916811801概述--

 讲师:段方详情


《数据安全技术》-段方某世界100强企业大数据总设计师教授北京大学博士后1概述1.1信息安全的概念及范围1.1.1概述1.1.2信息系统潜在威胁被动攻击主动攻击黑客攻击手法1.1.3信息安全技术概览1.1.4信息安全注重体系安全防护检测响应恢复1.2信息安全等级分类1.2.1分级的概念1.2.2分级保护涉及的标准1.2.3职责和角色1.2.4企业信息等级选择

 讲师:段方详情


=============================================================《数据管理及数仓建模》-段方某世界100强企业大数据/AI总设计师教授北京大学博士后=============================================================13465791461概述---

 讲师:段方详情


=============================================================《数智化发展及运用案例分析》-段方某世界100强企业大数据/AI总设计师教授北京大学博士后=============================================================23704858471概念

 讲师:段方详情


COPYRIGT @ 2001-2018 HTTP://WWW.QG68.CN INC. ALL RIGHTS RESERVED. 管理资源网 版权所有