金融行业风险预测模型实战培训(2-3天)
金融行业风险预测模型实战培训(2-3天)详细内容
金融行业风险预测模型实战培训(2-3天)
金融行业风险预测模型实战【课程目标】
本课程专注于金融行业的风控模型,面向数据分析部等专门负责数据分析与建模的人士。
本课程的主要目的是,培养学员的大数据意识和大数据思维,掌握常用的数据分析方法和数据分析模型,并能够用于对客户行为作分析和预测,提升学员的数据分析综合能力。
通过本课程的学习,达到如下目的:
掌握数据分析和数据建模的基本过程和步骤
掌握客户行为分析中常用的分析方法
掌握业务的影响因素分析常用的方法
掌握常用客户行为预测模型,包括逻辑回归、决策树、神经网络、判别分析等等,以及分类模型的优化
掌握金融行业信用评分卡模型,构建信用评分模型
本课程突出数据挖掘的实际应用,结合行业的典型应用特点,从实际问题入手,引出相关知识,进行大数据的收集与处理;探索数据之间的规律及关联性,帮助学员掌握系统的数据预处理方法;介绍常用的模型,训练模型,并优化模型,以达到最优分析结果。
【授课时间】
2-3天时间(每天6个小时)
【授课对象】
风险控制部、业务支撑、网络中心、IT系统部、数据分析部等对数据建模有较高要求的相关领域人员。
【学员要求】
每个学员自备一台便携机(必须)。
便携机中事先安装好Office Excel 2013版本及以上。
便携机中事先安装好IBM SPSS Statistics v24版本以上软件。
注:讲师可以提供试用版本软件及分析数据源。
【授课方式】
理论精讲 + 案例演练 + 实际业务问题分析 + SPSS实际操作
【课程大纲】
数据核心理念—数据思维篇
问题:什么是数据思维?大数据决策的底层逻辑以及决策依据是什么?
数字化五大技术战略:ABCDI战略
A:人工智能,目的是用机器模拟人类行为
B:区块链,构建不可篡改的分布记账系统
C:云计算,搭建按需分配的计算资源平台
D:大数据,实现智能化的判断和决策机制
I:物联网,实现万物互联通信的基础架构
大数据的本质
数据,是事物发展和变化过程中留下的痕迹
大数据不在于量大,而在于全(多维性)
业务导向还是技术导向
大数据决策的底层逻辑(即四大核心价值)
探索业务规律,按规律来管理决策
案例:客流规律与排班及最佳营销时机
案例:致命交通事故发生的时间规律
发现运营变化,定短板来运营决策
案例:考核周期导致的员工月初懈怠
案例:工序信号异常监测设备故障
理清要素关系,找影响因素来决策
案例:情绪对于股市涨跌的影响
案例:为何升职反而会增加离职风险?
预测未来趋势,通过预判进行决策
案例:惠普预测员工离职风险及挽留
案例:保险公司的车险预测与个性化保费定价
大数据决策的三个关键环节
业务数据化:将业务问题转化为数据问题
数据信息化:提取数据中的业务规律信息
信息策略化:基于规律形成业务应对策略
案例:用数据来识别喜欢赚“差价”的营业员
数据分析基础—流程步骤篇
数据分析的六步曲
步骤1:明确目的,确定分析思路
确定分析目的:要解决什么样的业务问题
确定分析思路:分解业务问题,构建分析框架
步骤2:收集数据,寻找分析素材
明确数据范围
确定收集来源
确定收集方法
步骤3:整理数据,确保数据质量
数据质量评估
数据清洗、数据处理和变量处理
探索性分析
步骤4:分析数据,寻找业务答案
选择合适的分析方法
构建合适的分析模型
选择合适的分析工具
步骤5:呈现数,解读业务规律
选择恰当的图表
选择合适的可视化工具
提炼业务含义
步骤6:撰写报告,形成业务策略
选择报告种类
完整的报告结构
演练:产品精准营销案例分析
如何搭建精准营销分析框架
精准营销分析的过程和步骤
用户行为分析—统计方法篇
问题:数据分析方法的种类?分析方法的不同应用场景?
业务分析的三个阶段
现状分析:通过企业运营指标来发现规律及短板
原因分析:查找数据相关性,探寻目标影响因素
预测分析:合理配置资源,预判业务未来的趋势
常用的数据分析方法种类
描述性分析法(对比/分组/结构/趋势/交叉…)
相关性分析法(相关/方差/卡方…)
预测性分析法(回归/时序/决策树/神经网络…)
专题性分析法(聚类/关联/RFM模型/…)
统计分析基础
统计分析两大关键要素(类别、指标)
统计分析的操作模式(类别指标)
统计分析三个操作步骤(统计、画图、解读)
透视表的三个组成部分
常用的描述性指标
集中程度:均值、中位数、众数
离散程度:极差、方差/标准差、IQR
分布形态:偏度、峰度
基本分析方法及其适用场景
对比分析(查看数据差距,发现事物变化)
演练:寻找用户的地域分布特征
演练:分析产品受欢迎情况及贡献大小
演练:用数据来探索增量不增收困境的解决方案
分布分析(查看数据分布,探索业务层次)
演练:银行用户的消费水平和消费层次分析
演练:客户年龄分布/收入分布分析
案例:通信运营商的流量套餐划分合理性的评估
演练:呼叫中心接听电话效率分析(呼叫中心)
结构分析(查看指标构成,评估结构合理性)
案例:增值业务收入结构分析(通信)
案例:物流费用成本结构分析(物流)
案例:中移动用户群动态结构分析
演练:财务领域的结构瀑布图、财务收支的变化瀑布图
趋势分析(发现事物随时间的变化规律)
案例:破解零售店销售规律
案例:手机销量的淡旺季分析
案例:微信用户的活跃时间规律
演练:发现客流量的时间规律
交叉分析(从多个维度的数据指标分析)
演练:用户性别+地域分布分析
演练:不同客户的产品偏好分析
演练:不同学历用户的套餐偏好分析
演练:银行用户的违约影响因素分析
用户行为分析—分析框架篇
问题:如何才能全面/系统地分析而不遗漏?如何分解和细化业务问题?
业务分析思路和分析框架来源于业务模型
常用的业务模型
外部环境分析:PEST
业务专题分析:5W2H
竞品/竞争分析:SWOT、波特五力
营销市场专题分析:4P/4C等
用户行为分析(5W2H分析思路和框架)
WHY:原因(用户需求、产品亮点、竞品优劣势)
WHAT:产品(产品喜好、产品贡献、产品功能、产品结构)
WHO:客户(基本特征、消费能力、产品偏好)
WHEN:时间(淡旺季、活跃时间、重购周期)
WHERE:区域/渠道(区域喜好、渠道偏好)
HOW:支付/促销(支付方式、促销方式有效性评估等)
HOW MUCH:价格(费用、成本、利润、收入结构、价格偏好等)
案例讨论:结合公司情况,搭建用户消费习惯的分析框架(5W2H)数据建模基础—流程步骤篇
预测建模六步法
选择模型:基于业务选择恰当的数据模型
特征工程:选择对目标变量有显著影响的属性来建模
训练模型:采用合适的算法对模型进行训练,寻找到最优参数
评估模型:进行评估模型的质量,判断模型是否可用
优化模型:如果评估结果不理想,则需要对模型进行优化
应用模型:如果评估结果满足要求,则可应用模型于业务场景
数据挖掘常用的模型
定量预测模型:回归预测、时序预测等
定性预测模型:逻辑回归、决策树、神经网络、支持向量机等
市场细分:聚类、RFM、PCA等
产品推荐:关联分析、协同过滤等
产品优化:回归、随机效用等
产品定价:定价策略/最优定价等
特征工程/特征选择/变量降维
基于变量本身特征
基于相关性判断
因子合并(PCA等)
IV值筛选(评分卡使用)
基于信息增益判断(决策树使用)
模型评估
模型质量评估指标:R^2、正确率/查全率/查准率/特异性等
预测值评估指标:MAD、MSE/RMSE、MAPE、概率等
模型评估方法:留出法、K拆交叉验证、自助法等
其它评估:过拟合评估、残差检验
模型优化
优化模型:选择新模型/修改模型
优化数据:新增显著自变量
优化公式:采用新的计算公式
集成思想:Bagging/Boosting/Stacking
常用预测模型介绍
时序预测模型
回归预测模型
分类预测模型
影响因素分析—根因分析篇
问题:如何选择合适的属性/特征来建模呢?选择的依据是什么?比如价格是否可用于产品销量预测?
数据预处理vs特征工程
特征工程处理内容
变量变换
变量派生
变量精简(特征选择、因子合并)
类型转换
特征选择常用方法
相关分析、方差分析、卡方检验
相关分析(衡量两数据型变量的线性相关性)
相关分析简介
相关分析的应用场景
相关分析的种类
简单相关分析
偏相关分析
距离相关分析
相关系数的三种计算公式
Pearson相关系数
Spearman相关系数
Kendall相关系数
相关分析的假设检验
相关分析的四个基本步骤
演练:营销费用会影响销售额吗?影响程度如何量化?
演练:哪些因素与汽车销量有相关性
演练:影响用户消费水平的因素会有哪些
偏相关分析
偏相关原理:排除不可控因素后的两变量的相关性
偏相关系数的计算公式
偏相关分析的适用场景
距离相关分析
方差分析(衡量类别变量与数值变量间的相关性)
方差分析的应用场景
方差分析的三个种类
单因素方差分析
多因素方差分析
协方差分析
单因素方差分析的原理
方差分析的四个步骤
解读方差分析结果的两个要点
演练:摆放位置与销量有关吗
演练:客户学历对消费水平的影响分析
演练:广告和价格是影响终端销量的关键因素吗
演练:营业员的性别、技能级别对产品销量有影响吗
演练:寻找影响产品销量的关键因素
多因素方差分析原理
多因素方差分析的作用
多因素方差结果的解读
演练:广告形式、地区对销量的影响因素分析
协方差分析原理
协方差分析的适用场景
演练:排除产品价格,收入对销量有影响吗?
列联分析/卡方检验(两类别变量的相关性分析)
交叉表与列联表:计数值与期望值
卡方检验的原理
卡方检验的几个计算公式
列联表分析的适用场景
案例:套餐类型对客户流失的影响分析
案例:学历对业务套餐偏好的影响分析
案例:行业/规模对风控的影响分析
客户行为预测—分类模型篇
问题:如何评估客户购买产品的可能性?如何预测客户的购买行为?如何提取某类客户的典型特征?如何向客户精准推荐产品或业务?分类模型概述及其应用场景
常见分类预测模型
逻辑回归(LR)
逻辑回归的适用场景
逻辑回归的模型原理
逻辑回归分类的几何意义
逻辑回归的种类
二项逻辑回归
多项逻辑回归
如何解读逻辑回归方程
带分类自变量的逻辑回归分析
多项逻辑回归/多分类逻辑回归
案例:如何评估用户是否会购买某产品(二项逻辑回归)
案例:多品牌选择模型分析(多项逻辑回归)
分类决策树(DT)
问题:如何预测客户行为?如何识别潜在客户?
风控:如何识别欠贷者的特征,以及预测欠贷概率?
客户保有:如何识别流失客户特征,以及预测客户流失概率?
决策树分类简介
案例:美国零售商(Target)如何预测少女怀孕
演练:识别银行欠货风险,提取欠贷者的特征
决策树分类的几何意义
构建决策树的三个关键问题
如何选择最佳属性来构建节点
如何分裂变量
修剪决策树
选择最优属性生长
熵、基尼索引、分类错误
属性划分增益
如何分裂变量
多元划分与二元划分
连续变量离散化(最优分割点)
修剪决策树
剪枝原则
预剪枝与后剪枝
构建决策树的四个算法
C5.0、CHAID、CART、QUEST
各种算法的比较
如何选择最优分类模型?
案例:商场用户的典型特征提取
案例:客户流失预警与客户挽留
案例:识别拖欠银行货款者的特征,避免不良货款
案例:识别电信诈骗者嘴脸,让通信更安全
多分类决策树
案例:不同套餐用户的典型特征
决策树模型的保存与应用
人工神经网络(ANN)
神经网络概述
神经网络基本原理
神经网络的结构
神经网络分类的几何意义
神经网络的建立步骤
神经网络的关键问题
BP反向传播网络(MLP)
径向基网络(RBF)
案例:评估银行用户拖欠货款的概率
判别分析(DA)
判别分析原理
判别分析种类
Fisher线性判别分析
案例:MBA学生录取判别分析
案例:上市公司类别评估
最近邻分类(KNN)
KNN模型的基本原理
KNN分类的几何意义
K近邻的关键问题
支持向量机(SVM)
SVM基本原理
线性可分问题:最大边界超平面
线性不可分问题:特征空间的转换
维灾难与核函数
贝叶斯分类(NBN)
贝叶斯分类原理
计算类别属性的条件概率
估计连续属性的条件概率
预测分类概率(计算概率)
拉普拉斯修正
案例:评估银行用户拖欠货款的概率
客户行为预测—模型评估篇
模型的评估指标
两大矩阵:混淆矩阵,代价矩阵
六大指标:Acc,P,R,Spec,F1,lift
三条曲线:
ROC曲线和AUC
PR曲线和BEP
KS曲线和KS值
模型的评估方法
原始评估法
留出法(Hold-Out)
交叉验证法(k-fold cross validation)
自助采样法(Bootstrapping)
客户行为预测—集成优化篇
模型的优化思路
集成算法基本原理
单独构建多个弱分类器
多个弱分类器组合投票,决定预测结果
集成方法的种类
Bagging
Boosting
Stacking
Bagging集成
数据/属性重抽样
决策依据:少数服从多数
典型模型:随机森林RF
Boosting集成
基于误分数据建模
样本选择权重更新公式
决策依据:加权投票
典型模型:AdaBoost模型
银行客户信用卡模型
信用评分卡模型简介
评分卡的关键问题
信用评分卡建立过程
筛选重要属性
数据集转化
建立分类模型
计算属性分值
确定审批阈值
筛选重要属性
属性分段
基本概念:WOE、IV
属性重要性评估
数据集转化
连续属性最优分段
计算属性取值的WOE
建立分类模型
训练逻辑回归模型
评估模型
得到字段系数
计算属性分值
计算补偿与刻度值
计算各字段得分
生成评分卡
确定审批阈值
画K-S曲线
计算K-S值
获取最优阈值
案例:构建银行小额贷款的用户信用模型
数据建模实战篇
电信业客户流失预警和客户挽留模型实战
银行欠贷风险预测模型实战
银行信用卡评分模型实战
结束:课程总结与问题答疑。
傅一航老师的其它课程
数据分析方法及生产运营实际应用 06.20
数据分析方法及生产运营实际应用【课程目标】本课程主要介绍数据分析在生产运营过程中的应用,适用于制造行业/保险行业的数据分析人员等。本课程的主要目的是,帮助学员了解大数据的本质,培养学员的数据意识和数据思维,掌握常用的统计分析方法和工具,以及生产、运营过程中的应用,并以概率的方式来进行决策,提升学员的数据分析及应用能力。本课程具体内容包括:数据决策逻辑,数据决
讲师:傅一航详情
数据建模及模型优化大赛辅导实战 06.20
大数据建模大赛辅导实战【课程目标】本课程主要面向专业人士的大数据建模竞赛辅导需求(假定学员已经完成Python建模及优化--回归篇/分类篇的学习)。通过本课程的学习,达到如下目的:熟悉大赛常用集成模型掌握模型优化常用措施,掌握超参优化策略掌握特征工程处理,以及对模型质量的影响掌握建模工程管道类(Pipeline,ColumnTransformer)的使用【授
讲师:傅一航详情
大数据时代下的精准营销(1天) 06.20
大数据时代的精准营销【课程目标】本课程从实际的市场营销问题出发,了解大数据在市场营销领域的价值以及应用。并对大数据分析与挖掘技术进行了介绍,通过从大量的市场营销数据中分析潜在的客户特征,挖掘客户行为特点,实现精准营销,帮助市场营销团队深入理解业务运作,支持业务策略制定以及营销决策。通过本课程的学习,达到如下目的:了解大数据营销内容,掌握大数据在营销中的应用。
讲师:傅一航详情
大数据时代下的精准营销(1天-金融行业) 06.20
大数据时代的精准营销【课程目标】本课程从实际的市场营销问题出发,了解大数据在市场营销领域的价值以及应用。并对大数据分析与挖掘技术进行了介绍,通过从大量的市场营销数据中分析潜在的客户特征,挖掘客户行为特点,实现精准营销,帮助市场营销团队深入理解业务运作,支持业务策略制定以及营销决策。通过本课程的学习,达到如下目的:了解大数据营销内容,掌握大数据在营销中的应用。
讲师:傅一航详情
大数据思维与商业模式创新,赋能企业增长 06.20
大数据决策思维与商业模式创新,赋能企业增长【课程目标】本课程主要帮助大家理解大数据的基本概念,着重探索大数据的本质,理解大数据的核心价值,以及掌握实现大数据价值的三个关键环节,大数据解决业务问题的六个步骤,然后聚焦大数据的七大核心思维,最后,再用案例说明了大数据在各行业的应用场景。大数据思维,让决策更科学!让管理更高效!让营销更精准!通过本课程的学习,达到如
讲师:傅一航详情
大数据思维与数字化转型(2天) 06.20
大数据思维与应用创新【课程目标】本课程主要帮助大家理解大数据的基本概念,着重探索大数据的本质,理解大数据的核心价值,以及掌握实现大数据价值的三个关键环节,大数据解决业务问题的六个步骤,然后聚焦大数据的七大核心思维,最后,再用案例说明了大数据在各行业的应用场景。大数据思维,让决策更科学!让管理更高效!让营销更精准!通过本课程的学习,达到如下目的:了解大数据基本
讲师:傅一航详情
大数据思维与应用创新(1天) 06.20
大数据思维与应用创新【课程目标】本课程主要帮助大家理解大数据的基本概念,着重探索大数据的本质,理解大数据的核心价值,以及掌握实现大数据价值的三个关键环节,大数据解决业务问题的六个步骤,然后聚焦大数据的七大核心思维,最后,再用案例说明了大数据在各行业的应用场景。大数据思维,让决策更科学!让管理更高效!让营销更精准!通过本课程的学习,达到如下目的:了解大数据基本
讲师:傅一航详情
大数据思维与应用创新(1天-金融) 06.20
大数据思维与应用创新【课程目标】本课程主要帮助大家理解大数据的基本概念,着重探索大数据的本质,理解大数据的核心价值,以及掌握实现大数据价值的三个关键环节,大数据解决业务问题的六个步骤,然后聚焦大数据的七大核心思维,最后,再用案例说明了大数据在各行业的应用场景。大数据思维,让决策更科学!让管理更高效!让营销更精准!通过本课程的学习,达到如下目的:了解大数据基本
讲师:傅一航详情
大数据挖掘工具:SPSSStatistics入门与提高【课程目标】本课程为数据分析和挖掘的工具篇,本课程面向数据分析部等专门负责数据分析与挖掘的人士,专注大数据挖掘工具SPSSStatistics的培训。IBMSPSS工具是面向非专业人士的高级的分析工具(挖掘工具),它提供大量的分析方法和分析模型,能够解决更复杂的业务问题,比如影响因素分析、客户行为预测/精
讲师:傅一航详情
大数据分析与挖掘综合能力提升实战(高阶) 06.20
大数据分析与挖掘综合能力提升实战【课程目标】本课程为高阶课程,面向所有业务支撑部门及数据分析部门。本课程的主要目的是,帮助学员掌握一些业务专题挖掘模型,帮助学员建立对复杂业务问题的数据挖掘综合能力。本课程具体内容包括:数据挖掘流程,数据预处理用户专题分析:用户群划分/客户价值评估/客户偏好分析/用户行为预测产品专题分析:产品设计优化、产品功能评估、产品最优定
讲师:傅一航详情
- [潘文富] 中小企业招聘广告的内容完
- [潘文富] 优化考核方式,减少员工抵
- [潘文富] 厂家心目中的理想化经销商
- [潘文富] 经销商的产品驱动与管理驱
- [潘文富] 消费行为的背后
- [王晓楠] 辅警转正方式,定向招录成为
- [王晓楠] 西安老师招聘要求,西安各区
- [王晓楠] 西安中小学教师薪资福利待遇
- [王晓楠] 什么是备案制教师?备案制教
- [王晓楠] 2024年陕西省及西安市最
- 1社会保障基础知识(ppt) 21151
- 2安全生产事故案例分析(ppt) 20179
- 3行政专员岗位职责 19035
- 4品管部岗位职责与任职要求 16210
- 5员工守则 15448
- 6软件验收报告 15384
- 7问卷调查表(范例) 15103
- 8工资发放明细表 14541
- 9文件签收单 14184