人工智能之自然语言处理技术与实战(4天)

  培训讲师:叶梓

讲师背景:
叶梓老师叶梓,工学博士,高级工程师。现某大型上市企业资深技术专家。2005年上海交通大学计算机专业博士毕业,在校期间的主研方向为数据挖掘、机器学习、人工智能。毕业后即进入软件行业从事信息化技术相关工作;负责或参与了多项、省市级人工智能及大数 详细>>

叶梓
    课程咨询电话:

人工智能之自然语言处理技术与实战(4天)详细内容

人工智能之自然语言处理技术与实战(4天)

人工智能之最新自然语言处理技术与实战
课程介绍:
自然语言处理(简称 NLP)是计算机科学和人工智能研究的一个重要方向,研究计算机和理解和运用人类语言进行交互的问题,它是集语言学、机器学习、统计学、大数据于一体的综合学科。
本课程主要介绍了NLP中的常用知识点:分词、词法分析、句法分析、向量化方法、经典的NLP机器学习算法,还重点介绍了NLP中最近两年来基于大规模语料预训练的词嵌入模型及应用。同时本课程偏重于实战,不仅系统地介绍了 NLP的知识点,还讲解如何实际应用和开发,每章节都有相应的实战代码。
课程时间:4天
学习对象
1.希望从事NLP工作的IT技术人员、开发人员等。
2.高校、科研院涉及NLP工作的学生和研究人员。
学习目标:1.掌握NLP基础;2.分词;词法、句法分析3.文本向量化
4.HMM与CRF
5.基于深度学习NLP算法;
6.神经语言模型
7.词嵌入方法
8.基于大规模语料预训练的词嵌入课程大纲
第一天:传统的NLP
一、NLP基础知识
1、自然语言处理简介
2、中文NLP的主要任务
3、常见的NLP系统
4、NLP的研究机构与资源
二、中文分词
1、基于字符串匹配的分词
2、统计分词法与分词中的消歧
3、命名实体识别
4、常用分词工具:JIEBA
三、文本的相似性
1、VSM
2、TF-IDF
3、初步情感分析
四、隐马尔科夫模型
1、形式化定义
2、三个问题
3、评估问题与向前向后算法
4、解码问题:维特比算法
5、学习问题:Baum-Welch算法
五、条件随机场
1、最大熵原理
2、无向图模型
3、最大团上的势函数
4、工具:CRF++
第二天:从传统到现代
一、从LSA到LDA
1、LSA与SVD分解
2、pLSA
3、LDA
二、神经网络语言模型
1、维数的诅咒
2、n-gram语言模型
3、NNLM的具体实现
4、改进的思路
三、word2vec
1、one-hot与Distributed
2、CBOW
3、skip-gram
4、Hierachical Softmax
5、Negative Sampling
四、循环神经网络(RNN)
1、RNN的基础架构
2、RNN的示例
3、LSTM
4、GRU
第三天:预训练模型之一(变形金刚、芝麻街、独角兽及其他
一、GloVe
1、与word2vec的区别
2、统计共现矩阵
3、用GloVe训练词向量
二、Transformer
1、所有你需要的仅仅是“注意力”
2、Transformer中的block
3、自注意力与多头注意力
4、位置编码(为什么可以抛弃RNN)
三、三大特征抽取器的比较
1、CNN、RNN与Transformer的比较
2、融合各种模型
四、Elmo
1、双向语言模型
2、工作原理
3、Elmo的应用场景
五、GPT
1、“一定会有人用它干坏事”
2、GPT的内部架构
3、Transformer的演示
4、自注意力机制的改进
5、GPT的应用场景
第四天:预训练模型之二(站上BERT的肩头)
一、BERT的前世今生
1、之前介绍的模型回顾
2、现代NLP的最新应用场景
3、条条大路通BERT
二、BERT详解
1、原理与方法
2、BERT的应用场景
3、BERT源码简介
三、站在BERT肩膀上的新秀们
1、ERNIE
2、XLnet

 

叶梓老师的其它课程

DeepSeek辅助日常工作培训提纲一、引言介绍大模型领域的竞争态势强调DeepSeek的独特优势二、DeepSeek概述DeepSeek的发展背景与定位DeepSeek各版本的特点与区别三、DeepSeek部署本地单机部署DeepSeek蒸馏版的硬件要求本地单机部署DeepSeek(量化)满血版的配置与性能本地单机多卡部署DeepSeek(量化)满血版的策

 讲师:叶梓详情


知识图谱的Python实现【课程简介】本课程包含知识图谱的基本概念及常用算法,并实现了一个基于知识图谱的对话机器人。通过1天的系统学习、案例讲解和动手实践,让学员能初步了解知识图谱的的相关知识与技术。【课程对象】理工科本科以上,或至少了解一种编程语言。知识图谱基础知识图谱存储知识图谱基础概念知识推理本体推理方法本体推理工具语义搜索RDF与RDFSOWL与OW

 讲师:叶梓详情


智能医疗技术与ChatGPT临床应用三日深度培训第一天:人工智能基础与Python编程入门上午:人工智能在医疗领域的应用概述Python编程基础环境搭建、数据类型、流程控制Python环境搭建Python数据类型与流程控制Python函数的应用Python面向对象编程 文件读写和目录操作异常处理机器学习概述数据探索性分析:智能化数据分析特征工程:数据准备、数

 讲师:叶梓详情


人工智能“最强模型”transformer详解【课程简介】Transformer是迄今为止人工智能领域的最新和最强大的模型类别之一。它几乎正在凭借一己之力来推动深度学习的又一波重大进步。Transformer模型充分运用了称为注意力和自注意力机制,以检测系列(或图像)中元素相互影响和相互依赖的微妙关系。本课程通过2天时间的详细介绍,可使学习者初步了解Tran

 讲师:叶梓详情


||1.人工智能概述||第一节:人工智能与机器学习基础|2.机器学习概述|||3.机器学习算法应用分析|||1.一元线性回归|||2.代价函数|||3.梯度下降法||第二节:回归算法|4.sklearn一元线性回归应用|||5.多元线性回归|||6.sklearn多元线性回归应用|||案例:葡萄酒质量和时间的关系|||1.KNN分类算法介绍|||2.KNN分

 讲师:叶梓详情


人工智能技术详解【课程内容】本课程包含大数据、机器学习、深度学习、知识图谱、强化学习与深度强化学习的相关知识。【课程时长】7天(7小时/天)【课程对象】理工科本科及以上,且至少了解一门编程语言。【课程大纲】(培训内容可根据客户需求调整)时间内容案例实践与练习Day1上午准备工作准备工作1.概念与术语2.Python(Anaconda)的安装3.Pycharm

 讲师:叶梓详情


人工智能与深度学习第一天:人工智能概念与经典算法人工智能概念综述(第一天——1)从一些术语辨析人工智能人工智能之连接主义的兴衰史这次AI的热潮是怎么来的?图像处理领域的最新热点(第一天——2)分类、目标检测与实例分割风格迁移自动驾驶人体姿态识别超分辨率图像生成语言处理领域的最新热点(第一天——3)Attention机制自动构建知识图谱看图说话预训练机制三大经

 讲师:叶梓详情


第一天上午:统计分析原理从最简单的案例开始统计基础描述性统计用SPSS实现描述性统计的案例回归分析:线性回归回归分析:logistics回归用SPSS实现回归分析的案例可视化工具第一天下午:数据库与数据仓库介绍数据库概述SQL(基本的增、删、改、查)SQL(稍复杂的子句或嵌套)基于MySQL的上机操作SQL语言数据仓库:度量与维度数据仓库:星型模型、雪花模型

 讲师:叶梓详情


计算机视觉【课程时长】3天(7小时/天)【课程对象】理工科本科及以上,且至少了解一门编程语言。【课程大纲】(培训内容可根据客户需求调整)时间内容案例实践与练习Day1上午准备工作准备工作决策树准备工作(1)概念与术语Python(Anaconda)的安装Pycharm的安装与使用JupyterNotebook的安装与使用Tensorflow与pytorch的

 讲师:叶梓详情


计算机视觉【课程简介】本课程包含计算机视觉领域的的重要概念及常用算法(神经网络、支持向量机、CNN、GAN等),以及人工智能领域热点应用场景:目标检测、图像分割、图像生成等。通过2天的系统学习、案例讲解和动手实践,让学员能初步迈入深度学习和计算视觉的知识殿堂。【课程收益】掌握基于python的视觉分析知识;掌握深度学习框架:TensorFlow、pytorc

 讲师:叶梓详情


COPYRIGT @ 2001-2018 HTTP://WWW.QG68.CN INC. ALL RIGHTS RESERVED. 管理资源网 版权所有